MATH 2050B 2017-18

Mathematical Analysis I Make-Up Midterm Solution

(Q1)(i) State the Well-Ordering Principle and the Archimedean Property.

(or an extended vision; you may choose to state the most convenient one for your subsequent use.)

(ii) let $p > 0$, and $x \in \mathbb{R}$. Show that

 $\exists ! m \in \mathbb{Z}$, such that $x + mp \in (0, p]$.

If $|x - y| < p$ and $x + mp \in (0, p]$, then show that

$$
-p < y + mp < 2p.
$$

(iii) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and of period $p > 0$. Show that f is uniformly continuous on \mathbb{R} .

Answer

(i) Well-Ordering Principle

Every nonempty subset of ℕ has a least element.

That is, for any $\emptyset \neq S \subset \mathbb{N}$, $\exists s_* \in S$, such that $s_* \leq s \forall s \in S$.

(Extended) Archimedean Property

 $\forall x \in \mathbb{R}, \exists! n \in \mathbb{Z}$, such that $n - 1 \leq x < n$.

(ii) Note since $p \neq 0, -\frac{x}{x}$ $\frac{\lambda}{p}$ is a well-defined real number.

By (extended) Archimedean Property, ∃! *m* ∈ ℤ, such that

$$
m-1 \le -\frac{x}{p} < m \Longrightarrow 0 < x + mp \le 1 \Longrightarrow x + mp \in (0, p].
$$

If $|x - y| < p$ and $x + mp \in (0, p]$, then $x - p < y < x + p$ and hence

$$
-p = 0 - p < x + mp - p < y + mp < x + mp + p \leq p + p = 2p.
$$

(iii) Fixed any $\varepsilon > 0$, since f is continuous on $[-p, 2p]$, by uniform continuity theorem,

$$
\exists \delta' > 0, \text{ such that } |f(s) - f(t)| < \varepsilon \,\forall \, s, t \in [-p, 2p] \text{ with } |s - t| < \delta'. \tag{1}
$$

Now, take $\delta = \text{Min}\{\delta, p\} > 0$, suppose $x, y \in \mathbb{R}$ with $|x - y| < \delta$,

in particular, $|x - y| < p$, by (ii), ∃! $m \in \mathbb{Z}$, such that $x + mp \in (0, p]$ and $y + mp \in (-p, 2p)$.

Note that by *f* is *p*−periodic, we know $f(x + mp) = f(x)$ and $f(y + mp) = f(x)$.

Also, note that $|(x + mp) - (y + mp)| = |x - y| < \delta \le \delta'$.

Then we know by (1)

$$
\left|f(x) - f(y)\right| = \left|f(x + mp) - f(y + mp)\right| < \varepsilon.
$$

Hence, f is uniformly continuous on ℝ.

(Q2) Let $f : [a, b] \to \mathbb{R}$ be continuous (where $a, b \in \mathbb{R}$ with $a < b$).

Using the Bolzano-Weierstrass Theorem to show that

- (i) *f* is bounded.
- **(ii)** ∃ *x*^{*}, such that $f(x) \leq f(x^*) \forall x \in [a, b]$.

Answer

Suppose it were true that *f* is NOT bounded.

That is, for any $n \in \mathbb{N}$, $\exists w_n \in [a, b]$, such that $f(w_n) > n$.

Note $\{w_n\}$ is bounded sequence with $a \leq w_n \leq b \forall n \in \mathbb{N}$,

By Bolzano-Weierstrass Theorem,

there is a convergent subsequence $\{w_{n_k}\}\$, let it converge to $w \in \mathbb{R}$,

Since $a \le w_{n_k} \le b \forall k \in \mathbb{N}$, we have $a \le w \le b$, i.e. $w \in [a, b]$,

hence $f(w)$ is a well-defined real number.

Since *f* is continuous, using sequential criterion of continuous function,

we have $f(w) = \lim_{k} f(w_{n_k})$.

Fixed any $N \in \mathbb{N}$, we have $f(w_{n_k}) > n_k \geq k \geq N \ \forall k \geq N$, it implies $f(w) \geq N$. That is $f(w) \geq N \forall N \in \mathbb{N}$, which is a contradiction with Archimedean Property. Hence, *f* is bounded.

Since *f* is bounded, by completeness axiom of ℝ, *s* : = Sup { $f(x)$: $x \in [a, b]$ } exists in ℝ.

Hence, $f(x) \leq s \forall x \in [a, b]$. Also, ∀ $n \in \mathbb{N}$, ∃ $x_n \in [a, b]$, such that $f(x_n) > s - \frac{1}{n}$ $\frac{1}{n}$.

Note $\{x_n\}$ is bounded sequence with $a \leq x_n \leq b \forall n \in \mathbb{N}$,

By Bolzano-Weierstrass Theorem,

there is a convergent subsequence $\{x_{n_k}\}\)$, let it converge to $x^* \in \mathbb{R}$,

Since $a \le x_{n_k} \le b \forall k \in \mathbb{N}$, we have $a \le x^* \le b$, i.e. $x^* \in [a, b]$,

hence $f(x^*)$ is a well-defined real number.

Since *f* is continuous, using sequential criterion of continuous function, we have $f(x^*) = \lim_k f(x_{n_k})$.

Fixed any $\varepsilon > 0$, by Archimedean Property, ∃ $N \in \mathbb{N}$, such that $\frac{1}{N} < \varepsilon$. Then, we have $s \ge f(x_{n_k}) > s - \frac{1}{n_k}$ n_k $\geq s-\frac{1}{t}$ $\frac{1}{k} \geq s - \frac{1}{N}$ $\frac{1}{N}$ > $s - \varepsilon \forall k \geq N$. This implies $s \ge f(x^*) \ge s - \varepsilon$, which is $|f(x^*) - s| \le \varepsilon$ true for all $\varepsilon > 0$. **(Q3)** Compute/Guess the limits (in ℝ ∪ {−∞*,*+∞}):

(i)
$$
\lim_{n \to \infty} r^n
$$
 where $0 < r < 1$.
\n(ii) $\lim_{x \to -\infty} \frac{1}{2x + 99}$.
\n(iii) $\lim_{x \to 2} \frac{x + 1}{x - 1}$.

Verify EACH of your assertions by virtue of definition.

Answer

(i) Let
$$
\delta = \frac{1}{r} - 1
$$
, that is $r = \frac{1}{1 + \delta}$.

Since $0 < r < 1, \delta > 0$.

Using Bernolli's Inequality, $(1 + \delta)^n \ge 1 + n\delta \ \forall n \in \mathbb{N}$.

That is,
$$
r^n = \frac{1}{(1+\delta)^n} \le \frac{1}{1+n\delta} \le \frac{1}{n\delta} \forall n \in \mathbb{N}
$$

Fixed any $\epsilon > 0$, using Archimedean Property, $\exists N \in \mathbb{N}$, such that $N \geq \frac{1}{s}$ $\frac{1}{\delta \varepsilon}$, that is $\frac{1}{N\delta} \leq \varepsilon$. Then we have

$$
|r^n - 0| = r^n \le \frac{1}{n\delta} \le \frac{1}{N\delta} \le \varepsilon \,\forall \, n \ge N.
$$

Therefore, we have $\lim_{n \to \infty} r^n = 0$.

(ii) Fixed any $\varepsilon > 0$, by Archimedean Property, ∃ *N* ∈ ℕ, such that *N* > $\frac{1}{\varepsilon}$ + 99,

it implies $2N > N > \frac{1}{\varepsilon} - 99$, that is $\frac{1}{2N + 99} < \varepsilon$.

Now, take $N' = \text{Max}\{N, 50\}$, if $x \in \mathbb{R}$ with $x < -N'$, we have

$$
x < -50 \text{ and so } \frac{1}{2x + 99} < 0 \text{, it means } \left| \frac{1}{2x + 99} \right| = \frac{-1}{2x + 99},
$$

and $x < -N$ and $-(2x + 99) > 2N - 99$, it means $\frac{-1}{2x + 99} < \frac{1}{2N - 99}$.
Now, we have

$$
\left|\frac{1}{2x+99}-0\right| = \frac{-1}{2x+99} < \frac{1}{2N-99} < \varepsilon \,\forall\, x < N'.
$$

Therefore, we have $\lim_{x \to -\infty}$ 1 $\frac{1}{2x+99} = 0.$

(iii) Fixed any $\epsilon > 0$, take $\delta = \text{Min} \left\{ \frac{1}{2} \right\}$ $\frac{1}{2}, \frac{\varepsilon}{4}$ 4 $\sqrt{ }$ *>* 0,

if $x \in \mathbb{R}$ with $0 < |x - 2| < \delta$, we have

$$
\frac{3}{2} < x < \frac{5}{2} \implies \frac{1}{2} < x - 1 < \frac{3}{2} \implies 0 < \frac{2}{3} < \frac{2}{x - 1} < 2 \implies \left| \frac{1}{x - 1} \right| < 2
$$

if $x \in \mathbb{R}$ with $0 < |x - 2| < \delta$, we have

$$
\left|\frac{x+1}{x-1} - 3\right| = \left|\frac{x+1-3x+3}{x-1}\right| = \left|\frac{-2x+4}{x-1}\right| = 2|x+2|\left|\frac{1}{x-1}\right| < 2 \cdot \delta \cdot 2 \le \varepsilon.
$$

Therefore, we have $\lim_{x\to 2}$ $x + 1$ $\frac{x+1}{x-1} = 3.$ **(Q4)** Let $f : \mathbb{R} \to \mathbb{R}$, and $x_0, l, l' \in \mathbb{R}$ be such that $l \neq l'$ and $\lim_{x \to x_0^-} = l$ and $\lim_{x \to x_0^+} = l'$.

By definition/their negation, show that $f(x)$ does not converge as $x \to x_0$ in ℝ ∪ { $-\infty, +\infty$ }.

Answer

(Case 1) Suppose it were true that $\lim_{x \to x_0} f(x) = L \in \mathbb{R}$.

Fixed any $\epsilon > 0$, by all conditions about limit, we have $\exists \delta_1 > 0$, such that for any $x \in \mathbb{R}$ with $0 < x_0 - x < \delta_1$, we have $|f(x) - l| < \frac{\varepsilon}{2}$ $\frac{2}{2}$, and $\exists \delta_2 > 0$, such that for any $x \in \mathbb{R}$ with $0 < x - x_0 < \delta_2$, we have $|f(x) - l'| < \frac{\varepsilon}{2}$ $\frac{2}{2}$, and $\exists \delta_3 > 0$, such that for any $x \in \mathbb{R}$ with $0 < |x - x_0| < \delta_3$, we have $|f(x) - L| < \frac{\varepsilon}{2}$ $\frac{c}{2}$. Note that $\delta_4 := \min{\{\delta_1, \delta_3\}} > 0$, take $x' = x - \frac{\delta_4}{2}$ $\frac{x_4}{2}$, since $0 < x_0 - x' < \delta_1$ and $0 < |x' - x_0| < \delta_3$, we have $|l - L|$ ≤ $|f(x') - l|$ + $|f(x') - L|$ ≤ $\frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ $\frac{\epsilon}{2} = \epsilon.$ That is, $|l - L| \leq \varepsilon$ true for any $\varepsilon > 0$, hence, $|l - L| = 0$ and so $l = L$. Note that $\delta_5 := \text{Min}\{\delta_2, \delta_3\} > 0$, take $x'' = x + \frac{\delta_5}{2}$ $\frac{35}{2}$, since $0 < x'' - x_0 < \delta_2$ and $0 < |x'' - x_0| < \delta_3$, we have $|l' - L| \le |f(x'') - l'| + |f(x'') - L| \le \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ $\frac{\epsilon}{2} = \epsilon.$ That is, $|l' - L| \le \varepsilon$ true for any $\varepsilon > 0$, hence, $|l' - L| = 0$ and so $l' = L$. This is a contradiction since $l = L = l'$ but $l \neq l'$ by assumption. Hence, $f(x)$ does not converge as $x \to x_0$ in \mathbb{R} .

(Case 2) Suppose it were true that $\lim_{x \to x_0} f(x) = +\infty$.

By all conditions about limit, we have $\exists \delta > 0$, such that for any $x \in \mathbb{R}$ with $0 < x_0 - x < \delta$, we have $|f(x) - l| < 1$, this implies $f(x) < 1 + l$, and $\exists \delta' > 0$, such that for any $x \in \mathbb{R}$ with $0 < |x - x_0| < \delta'$, we have $f(x) > l + 2$. Note that $\delta'' := \text{Min}\{\delta, \delta'\} > 0$, take $x' = x - \frac{\delta''}{\delta}$ $\frac{y}{2}$, since $0 < x_0 - x' < \delta$ and $0 < |x' - x_0| < \delta'$, we have $f(x') > l + 2 > l + 1 > f(x')$, it implies $0 > 0$ which is a contradiction. Hence, $f(x)$ does not converge as $x \to x_0$ in $\{+\infty\}$.

(Case 3) Suppose it were true that $\lim_{x \to x_0} f(x) = -\infty$.

By all conditions about limit, we have $\exists \delta > 0$, such that for any $x \in \mathbb{R}$ with $0 < x_0 - x < \delta$, we have $|f(x) - l| < 1$, this implies $f(x) > l - 1$, and $\exists \delta' > 0$, such that for any $x \in \mathbb{R}$ with $0 < |x - x_0| < \delta'$, we have $f(x) < l - 2$. Note that $\delta'' := \text{Min}\{\delta, \delta'\} > 0$, take $x' = x - \frac{\delta''}{\delta}$ $\frac{y}{2}$, since $0 < x_0 - x' < \delta$ and $0 < |x' - x_0| < \delta'$, we have $f(x') < l - 2 < l - 1 < f(x')$, it implies $0 < 0$ which is a contradiction. Hence, $f(x)$ does not converge as $x \to x_0$ in $\{-\infty\}$.